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ABSTRACT
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I. INTRODUCTION

All electromagnetic waves that can propagate in a straight beam pipe must have
phase velocities larger than ¢, the velocity of light. As a result, the particle beam can
never catch up with them and no resonance can occur, because the wave traveling
with it will never have a velocity exceeding c. The situation of a curved toroidal beam
pipe is quite different. The wave with a particular azimuthal harmonic n travels
with different linear phase velocities depending on the distance from the center of the
toroidal ring. For example, if the beam travels with velocity Sc at a toroidal radius R,
the electromagnetic wave traveling with the beam will have a phase velocity rfc/R
at a radius r. When this phase velocity exceeds ¢, the electromagnetic wave should
be able to propagate, in analogy to the straight beam pipe. The condition for this to
happen is therefore

Ry

R
where 21 is the radius of the outer edge of the beam pipe. Under this situation,
the electromagnetic wave generated by the beam interacts with the beam. In other
words, a resonance occurs and the beam sees an impedance. This problem has been
studied by Laslett-Lewish! and Faltens-Laslett.? Our approach, way of solution, and
interpretation on the impedance seen are different from theirs. Qur first attack on
this problem was done in 1980 when longitudinal coupling impedance for the Energy-
Doubler (or the TEVATRON) was examined,? but no detailed report was written at
that time.

The main concern here is the SSC. We want to investigate whether these reso-
nances will affect the stability of the beam. The SSC main ring has a mean ring
radius of 13200.95 m and a beam pipe radius of b = 1.5 cm. If the beam is at the
center of the beam pipe, resonance can occur when the relativistic 7 > 663 according
to criterion (1.1). Therefore we expect the beam to meet these resonances for the
whole acceleration and storage cycle.

For a wave that can ‘propagate’ inside a beam pipe of cross-sectional size b, the
wavelength must be less than or of the order of b or the azimuthal harmonic must be
bigger than the cutoff harmonic given by

>1, (1.1)

— (%) , (1.2)

where 27 R 1s the length of the particle orbit. For the toroidal beam pipe, in order
that the particle beam can catch up with the resonant wave, the condition is more
restrictive, because boundary conditions have to be met in all three directions. The
propagating electromagnetic wave, which has to travel with velocity ¢ or bigger, is



confined mainly to a small region near the outer edge of the beam pipe. Therefore,
the wavelength will be much less than b. As it turns out, in Section IIT, these resonant
waves have a lowest azimuthal harmonic n;; given by

1 = 0 (n%z) . (13)

For a machine such as the SSC which has a large ring radius and a very narrow
beam pipe radius, the cutoff harmonic n., = 2.12 x 10° is very big. Thus the lowest
resonant toroidal harmonic ny; ~ O(10%) is very much larger than n.,. The effective
impedance per unit harmonic of this lowest mode seen by the beam turns out to be
0.36 2 at ~ 20 TeV. But the SSC bunch has a rms length of oy = 7 ¢m or a spectrum
extending to a rms harmonic of only 1.89 x 10°. Therefore these toroidal resonances
should have negligible effect on the single bunch mode stability. This impedance can
still drive a microwave growth, however. But this growth will be damped completely
by the designed momentum spread of the beam. On the other hand, the story can
be quite different for a small storage ring with a large beam pipe radius, because n.,
will be small and the lowest toroidal resonant harmonics may not be larger than n.,
by very much.

In Section II, the fields excited by the particle beam in the toroidal beam pipe
are computed by assuming perfectly conducting pipe wall. In Section ITI, we pick
out the resonances and compute the resonant harmonics. The SSC main ring 1s used
as an example. The figures of merit @ and the shunt impedances Zg, of some lower
resonant modes are derived in Section IV using the usual perturbative method by the
introduction of a finite wall conductivity. In Section V, the effective impedance seen
by the beam is computed. Finally in Section VI, the application is extended to the
SSC booster rings and the TEVATRON.

II. THE FIELDS IN A TOROIDAL BEAM PIPE
II.1 The model

We shall use the Gaussian units except when specified otherwise. To simplify
the mathematics, we consider a toroidal beam pipe with a rectangular cross section:
width 2b and height A as shown in Fig. 1. Consider a beam in the mid-plane at a
radius R, having a single azimuthal harmonic n, traveling at a single velocity fec, and
having an angular phase frequency w. The charge density is

p(r,0,2) = M\b(2)8(r — R)et(né —wi) (2.1)



where ), is the line charge density and a cylindrical coordinate has been used (see
Fig. 1). The current density has only a #-component,

Jo(r, 8, 2) = Mfics(2)6(r — R)et(né —wt) (2.2)

Continuity requires w = nwy = nfc¢/R, where wo/27 is the revolution frequency of
the beam particles.

Because a cylindrical coordinate has been chosen, it is most convenient to solve
first for electric and magnetic fields along the z-direction, E, and H,, which satisfy

(v2 + 52—;) (f,) =0 (2.3)

everywhere inside the beam pipe except at the beam itself. The transverse (to z)
fields E; and H; can then be obtained from

— 22 ¢t -~ QE, ic- .
E, (1——6—)=Ev)c +§VeXZHZ’

w? Oz
- £2c? ¢t -~ 0H, ic- .
H, (1 — F = EV‘W - ;vt x zE, . (24)

In above, we have assumed the time-dependence e=™* and the z-dependence sinfz or
cosz.

11.2 TM part with perfectly conducting walls

We want to solve for the electromagnetic flelds excited by the beam specified by
Eqgs. (2.1) and (2.2). Then all the fields must have exp[i(nf — wt)] behavior with
w = nwy = nPc/R. The fields are divided into the TM part derivable from E, and
the TE part derivable from H,. Although this division is clear mathematically, care
must be exercised to include both contributions in satisfying boundary conditions or
matching fields across a charge or current distribution.

From Eq. (2.3), we obtain

>, h
E;TM(T: 9, 2, t) = Z ia;IMZn(QiT) cos 6:’ ('2* + z) z z 0 s (25)

i=1

= - h

HE(r, 8,2,1) = za;_l“EZn(g,;r) sin &; (5 F z) z z 0, (2.6)
i=1

where the exp[—in(f — wo] has been suppressed. The z dependence sin f,(% F z) has

been chosen for HIE because the vertical magnetic field should vanish at z = +h/2.
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As a result, Ef® ~ 9HI® /0r will also vanish at z = £h/2. Then, EfM ~ dE™ /52
must be made to vanish at z = +h/2 also. The cos 6.;(’21 F z) dependence for EM™M

is therefore the correct choice. The signs before the coefficients ™ and aF are so

chosen that, for the beam at the midplane, ET™ (HI¥) should be odd (even) in z.
Let us concentrate on the TM part. The radial wave 1s

Zn{qir) = Yo R n(gir) — Ju(GR)Yo(air) (2.7)

where J, and Y, are respectively the Bessel function and Neumann function of order
n. Note that Z,, which is proportional to E,, has been consiructed to vanish at the
inner radius R_ of the toroidal beam pipe. In order that it will vanish at the outer
radius Ry, we set ¢; R, equal to the i-th zero of Z,(z). From the wave equation (2.3),
€; can then be determined by
2
£ = (%) —q .

We would like the reader to pay special attention to the terminology used here. The
TM and TE imply transverse to the vertical or z-direction but not¢ the usual beam
direction.

Next, we need to determine the coefficient «7™. Before doing so, we must derive
the orthonormal relation for Z,(¢;r). Since Z,(¢;r) satisfies

18 i) , n?
~ 5 [ra:zn(q,r)] + (Q'i - ‘13) Z.(qr) =0, (2.8)

we have for ¢ # j,

@) [ rdrZu(a)2u(as)

- /Jf o {Z“(q£r)6% [TE%Z“(%’")] - Z"(W)a% l:ra_aTZn(QiT')]}

Fy

1 (2.9)

o J
= ?"Zn(q;?")é;zn(qg'i‘") - TZn(Qj?‘)'g;Zn(qi’")
R_

which vanishes for either the Dirichlet or Neumann boundary condition, indicating
the orthogonality of Z,(¢;r). For the normalization, let us take the derivative of
Eq. (2.9) with respect to ¢; and then let ¢; — ¢; before putting in the limits Ry. We
get, after making use of Eq. (2.8),

Ry 2 2 712 2 n? 2 o
2g /R rdrZ, (gir) = qr*Z, (qr) + ¢ (T' - q_z) Z,(qir)

- )

(2.10)
R_



The resulting orthonormal condition can be written as

R _

/R " rdrZ,(qir) Za(g;r) = 8 RANTWTE (2.11)
where for the Dirichlet problem or TM modes, the dimensionless normalization con-
stant 1s | TR? B2

M __ + 72 2
™= [ ar) - B )| (2.12)
and for the Neumann problem or TE modes,
1 Rz n? R? nt \
TE - 2 - = ; — —=V Z3{q;R)| . .
M 2n [(R‘* 9332) (6) - (Rz QERQ) (4R )] (2:13)

In above, R = 2(R.|.+R ) is the average radius of the toroidal beam pipe, b =
2(Ry—R_) is the half width of the beam pipe, and n = b/R. Note that in Eq. (2. 13)

we have used Z, defined by Eq. (2.23) below as the radial wave because it satisfies
the Neumann boundary condition. If we define a dimensionless radial variable = by

r= R(1+nz), (2.14)

Eq. (2.11) that defines the dimensionless normalization constants NMTE can be
rewritten as

[, e 412z =A™, [T a B =N @)

The Bessel functions of order n are complete in the r-space, and with the aid of the
orthonormal relation, we can write

S S Znan) ZalaiR) = st~ ) (2.16)

The discontinuity of E, across z = 0 in Eq. (2.5) is related to the charge density
of Eq. (2.1) by Gauss’s law, which implies

le.v)

E 2a;»TMZn(q,-r) cos %ﬁ =4n . 0(r — R) . (2.17)

i=1

Obviously, only the TM part contributes. Substituting Eq. (2.16) in Eq. (2.17), we
get

v _ 2T RZ,(GR)

- nRINIM cosh /2 (2.18)
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Finally, we obtain for the TM part,

R & Zn(qir)Za(q:R) cos&i(§ F 2) >
E.(r,0,2,t) = £27}, T Z MTM s bR ]2 zZ

where again the factor exp[—in(f — wy)] has been suppressed. The transverse TM
fields can be obtained easily with the help of Eq. (2.4). Note that Eq. (2.19) will blow
up when cos {;h/2 = 0. We will discuss this in Section III.

0, (219

IL.3 TE part with perfectly conducting walls

Let us rewite H, for the TE part,

HIE(r,8,2,t) = ZCETEZ (gir)sin &; (h ) z 2 0. (2.20)
i=1
Here, £; is again given by
2 B 2
g="0 g, (2.21)
through Eq. (2.3). However, ¢; is not the same as that for the TM part; it is determined
from the boundary conditions of the radial magnetic field gotten from Eq. (2.4),

H.(r,8,z,t) = H™M(r, 8, z,t) + HIE(r, 8,z,t), (2.22)
where
™ _ nwR E Z.(qir)Z, (:R) cos¢; ( ) >
H™M(r,8,2,1) = izm 72 Zl A oS Eh T zz 0, (2.23)
oo TE&1 h
H™(r,0,2,1) = E:F Z,(gir) cos f.;( F z) :20. (2.24)
i=1 i

The radial magnetic field must vanish at » = Ry. This is true for H™  Therefore,
we must choose

Zo(gir) = Y (G R_)T(gir) — T (a: R (gir) (2.25)

with ¢;2; equal to the i-th zero of g;(m) Again this ¢; is different from that in
Eqgs. (2.23); the latter is determined by the zeroes of Z, in Eq. (2.7).

The strength of excitation aJF can be obtained from Ampere’s law. Equating the
discontinuity of H, in Eq. (2. 22) and the beam current in Eq. (2.2), we get

) - 35 2

=1 t

Z’(q, )cosggl = %/Jgdz
= 47Af6(r — R) . (2.26)



We have shown that Z,(gr), being a linear combination of Bessel functions satisfying
the Neumann boundary condition, obeys an orthogonality relation,

By .
/R " Zu(ar) ZlgrIrdr =0 i (2.27)

Differentiating with respect to ¢ and ¢;, we get

Ry .
fR P2l (@) Z (gr)rtdr =0 i (2.28)
We can therefore write
Ry o .
./1; i Z,'l(q,-r)Z:L(qu)radr = 6,'_,‘R4M s (2.29)

where A, is some dimensionless function of g;R and ¢;b. The strength ¥ in Eq. (2.26)
can now be solved easily; Eq. (2.20) can now be written as

= 2mA B R® Zalgir) B (i R) sin&i (2 T 2)
H, ,0,2,1) = — =T
(r6:2,1) L i N cos E:h[2
FIMZ (g;r)sin ‘5‘(% + z) >

+§ 2% RN,  cosfh)2 220, (2.30)

where

R ~
FP™M = [ EP) ) (qir)rtdr
R_

is the contribution of the TM part. Again there is a blowup if cos Eh/2 =0,

All the transverse fields can now be obtained from Egs. (2.19) and (2.30). For
example, if the longitudinal coupling impedance is desired, Ey can be computed using
Eq. (2.4). It appears that Eqs. (2.19) and (2.30) are very complicated because the g
in the TM part is different from that in the TE part. However, they are approximately
equal at low frequencies and the situation can be simplified tremendously. In fact, we
do get back the familiar longitudinal space charge impedance provided that the beam
is given a finite size. Fortunately, we will be dealing with toroidal resonances only in
this paper and Egs. (2.19) and (2.30) will not be pursued further.

There is, however, another way to solve for the fields generated by the beam. The
toroidal cavity can be divided into two toroids with » < R and r > R instead. The
summation will then be over the eigenvalues of the vertical wave function which is
the same for the TM and TE parts. The analysis of the coupling impedance at low
frequencies will then be very much easier. This analysis will be presented elsewhere.
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III. RESONANCES

J1I.1 The resonant waves

We know that £; is obtained from

nzﬂz
§=—Fr 4, (3.1)
where g; R, is the i-th zero of Z,(z) for the TM part or the 7-th zero for the TE part.
Whenever

2k — 1)
b= ———
cos£;h/2 = 0 and one wave in the summation (2.19) or (2.30) goes to infinity. This is
a resonant mode. The infinity comes in because we have treated the beam-pipe wall
as perfectly conducting.

Let us examine this particular mode. Substituting Eq. (3.2) in Eq. (2.5) the TM
E. becomes

E=1,2 -, (3.2)

2~

W(Jch 1z (3.3)
for all z. Now FE, is analytic across z = 0. In fact, this represents a wave in the
empty beam pipe moving with the same angular velocity and has the same azimuthal
variation as the beam. In other words, it is the solution of the homogeneous Maxwell’s
equations but with the same # and ¢ dependence as the beam. This implies that this
wave can propagate by itself in the toroidal beam pipe without the presence of the
beam. With the presence of the beam, this wave will interact with the beam because
it has the same # and ¢ dependence. Therefore a resonance will be established.

Similar remarks can be made for the TE part. With & given by Eq. (3.2), the
magnetic field in Eqs. (2.20) and (2.24) is analytic across z = 0, and the electromag-
netic fields form a solution for the homogeneous Maxwell’s equations. Since these
resonances do not require the support of the beam, the TM and TE parts can exist
independently. Thus from now on we can talk about TM and TE modes.

Given an 7 and a k, this resonant wave exists only for the harmonic n that satisfies

. 2B w2k 1)

E.(r,0,2,1) = —a]™Z,(g;r)sin

Zo(gR) =0 and ¢ = T X (3.4)
for the TM modes, and

. 2 42 2raL _ 1)\2

Z'(gRy) =0 and ¢’= nf _m(2k—1) (3.5)

R? h?
for the TE mode. Therefore, for these resonant modes, we should write £; instead of
¢, and the resonant azimuthal harmonic, the solution of Eq. (3.4) or (3.5), should be
denoted by n;:.



IT1.2 Solutions for resonant harmonics

In this section, we try to solve Eq. (3.4) for the TM modes and Eq. (3.5) for the
TE modes. The problem is complicated because the harmonic n which we are solving
for is the order of the Bessel functions in Z, or ?:’ﬂ and it also resides in the argument
of Z, or Z, through ¢ Observing that n should be much bigger than the cutoff
harmonic ne, ~ R/b or R/h, we can expand ¢;Ry as

2732 2 —_ 2
Ry = \/”ﬂ _ T2k UR(lib—*)

R? h? R
2270 2
Enl:{:-{)i—l—Rﬂ-(ﬂk 1)
R 242 2n2h?
n[l+ns — af
= N2y, (36)
where

b+ = R.+. - R and b_. = R — R_ (37)

are the distances of the beam from, respectively, the inner and outer edge of the beam
pipe. The other two quantities, defined as
2.2 2
Wi:%a 0:212+R7T(22k2 1) (3.8)
5 2n?h

are much smaller than unity. So ¢; Ry is always very near to m, Or zx = ¢; Ry /n is very
close to unity. Thus, the Bessel functions can be expressed in terms of Airy functions
or their derivatives:

Tu(nz) = ( d )1/4 Ai(”2/34)+o(—}-—) ,

1— 22 nl/3 n5/3
/4 o
Ya(nz) = — ( lfczz)l 4B1$2/f‘:) +0(=5) -
rom = £ () A0 ()

where
1441 — 22
st = 111—--_14—\/1—z2 z <1
£ (3.10)
1
2P = V22T —cos™t 2 z2>1.

F4



Since z 2 1, we find

¢ =231 —2)+ 01 — 2|¥?) . (3.11)
Therefore, comparing with Eq. (3.8), we have
Ce=2"(aFns), (3.12)

where the subscript £ corresponds to ¢; R4,
Now in terms of Airy functions, Eqs. {(3.4) and (3.5) transform into,

™ : Ai(~y)Bi(z) — Ai(2)Bi(~y) =0 , (3.13)
TE : AV(—y)Bi'(z) — Ai'(z)Bi'(~y) =0, (3.14)
with 1/3,205 )
T = n“ein. + @
(3.15)
y = 213n23(n, — a) .
Equations (3.13) and (3.14) can be rewritten as,
Ai(z)  Ai(—y)
: = 1
™ Bi(z) Bi(-y)’ (3.16)
) she
TE: Ailz) _ Ai(-y) (3.17)

Bi'(z) Bi'(—y)
We see from Fig. 2 that, when = > 0, Ai(z)/Bi(z) and Ai'(z)/Bi’(z) are monotonic
and decay to zero exponentially. Thus Eq. (3.16) or Eq. (3.17) will have no solution
if both z and ~y are positive aside from the trivial one z = y = 0. Since z is positive
[Eq. (3.15)], to arrive at a solution, we must have y positive or n;. > «. Note that this
condition is equivalent to criterion (1.1), because at the limit of the criterion nIM or
nit goes to infinity (see below) and the second term of « in Eq. (3.8) vanishes. Under
this situation, the left sides of Eqs. (3.16) are exponentially decaying, but the right
sides are monotonically inereasing and resemble the tangent curves having zeros and
reaching +co. Since
I
Yy oo
when the right sides of Eq. (3.16) and Eq. (3.17) reach their respective zeroes, the left
sides have already decayed to zero practically. Thus, to a high degree of accuracy, the
solutions are (see Fig. 2):

>1, (3.18)

TM : Ai(-y) =0, (3.19)
TE : Ai(—y)=0. (3.20)
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Therefore the resonant harmonics are given by

1 R%(2k - 1)2] _ {

2n2 h?

Yi ™
yi TE,

21/3n§£3 b_+ _

7~ 3y (3.21)

where —y; and —y! are respectively the ith zeroes if Ai(—y) and Ai'(—y), the first few
of which are listed in Table I. Since Ai(-y) starts off positive at y = 0 and Ai'(—y)

TM modes | TE modes
v = 2.3381 | y; = 1.0188
yo = 4.0879 | yh = 3.2482
ys = 5.5205 | y4 = 4.8201
ys = 6.7867 | y, = 6.1633
ys = 7.9441 | yt = 7.3722
Yo = 9.0227 | y; = 8.4885

Table I: Zeroes of Ai{—y) and Ai'(—y).

starts off negative at y = 0, it is obvious that the lowest resonant wave is a TE mode.
The accuracy of the solutions can be improved straightforwardly by iterations of
Egs. (3.13) and (3.14) and by including more terms in Eq. (3.9). However, higher
accuracy is not meaningful because firstly the cross section of the beam pipe is not
exactly rectangular and secondly the toroidal ring is not perfectly round.
In most cases, ng > (R3/bh2)1/? ~ n3/2, the last term on the left side of Eq. (3.21)
can be neglected, and the solution can then be simplified to

b { D, (3.22)
R 14y~ TR '
The lowest mode is R.5 s
= 1+0.8086n,"° (3.23)

which is the first TE mode. This is the formula given by Faltens and Laslett.? With the
beam roughly at the center of the beam pipe, R ~ R, this lowest resonant harmonic
reduces to

(3.24)

<a

R 3/2
TE _ it — 3/2
nlk—1.375(b) =0 (nd?) .

11



Note that formula (3.22) may not be accurate for the lowest modes.
For the SSC, if we take b = A/2 = 1.5 cm, R = 13200.95 m, the lowest TM and
TE resonant harmonics at 20 TeV (v = 20,000 has been used) are respectively

nit = 2.57 x 10°
nir = 1.40x 10°, (3.25)

which differ by quite a bit from the results of the approximate formulas (3.22), nTM =
2.09 x 10° and n{f = 6.01 x 10, although the orders of magnitude are correct.

The field distributions in the radial direction are plotted in Figs. 3 and 4 respec-
tively for the lowest TM and TE modes. We see that the fields are always concentrated
in a region between the beam and the outer edge of the beam pipe, where the linear
velocity can be larger than ¢. Therefore, the wavelength should be much less than
the size of the pipe. As v decreases, the resonant fields are pushed more and more
towards the outer edge of the pipe in order to attain the velocity of light. As a result
the wavelength decreases or the resonant azimuthal harmonic n! or nIF increases.
When the beam velocity drops to the limit of criterion (1.1), the available region for
propagation inside the pipe is squeezed to zero and nJM or n]F will be pushed to
infinity. For this reason, Faltens-Laslett’s formula (3.22) will be accurate only at low
beam momenta when nIM or nlF is large enough so that the third term in Eq. (3.21)
can be neglected.

Harmonics of other modes are tabulated in Table II. For comparison, the cutoff
harmonics for this rectangular beam pipe are ni™ = 1.95 x 10% and n1F = 1.38 x 108,
and the the revolution frequency is 3.61 kHz. However, for these cutoff harmonics
the TM and TE imply transverse to the beam direction, which are different from the
TM and TE defined in this paper. The cutoff harmonic for a circular beam pipe of
radius 1.5 em is ng, = 2.12 x 108,

It is interesting to note that our approximate solutions of the resonant frequencies
in Eq. (3.21) do not depend on the radius of the inner edge of the beam pipe R_.
The only requirement is that the radial distance of the beam from the outer edge of
the beam pipe is small compared with the radius of the outer edge; or b, < Ry . In
fact, we can reduce R_ to zero and have the same solutions. Under this situation,
the toroidal beam pipe cavity reduces to a cylindrical cavity of radius R4 and height
h. The reason is very clear upon examining the fields in Figs. 3 and 4. At resonance,
these fields are pushed towards a small region near the outer edge of the beam pipe
and are vanishingly small near the inner edge. As a result, it does not matter at all
whether the inner boundary of the beam pipe is present or not.

It is worthwhile to point out that the harmonic n must be an integer. However,
it has been treated as a continuous variable in the solution of the resonance modes.

12



Theoretically, the possibility that a solution lands at an exact integer is zero. There-
fore, in the ideal situation of a toroidal cavity with infinitely conducting walls, there
is no legitimate solution at all. In other words, the resonances with non-integer n
which we have solved above are mathematical in nature only. They do not exist and
will no affect the beam at all. However, when wall resistivity is introduced, each reso-
nance will have a finite spread and will certainly cover some integers. Thus excitation
hecomes possible.

IV. MODEL WITH FINITE WALL CONDUCTIVITY
IV.1 Figure of merit

If we introduce a finite wall conductivity o, each resonance will no longer be infinite
and has a finite width. The sharpness of the resonance is described by the figure of
merit QM or @QLE, which can be estimated from the volume and surface area of the
beam-pipe cavity

N 2 volume , (4.1)
§ surface area
where § is the skin depth into the pipe wall. For our rectangular toroidal beam pipe,

this estimate becomes (in ks units)

Zono  2bh
2R 2b+h°

QN

(42)

where Zy = 377 {1 1s the impedance of free space. Taking copper at 4°K or ¢ =
1.80 x 107 (£2-m)™1, we get @ ~ 76.0y/n. Therefore the lowest resonance at ~ 20 TeV
has QTF ~ 2.84 x 10° or a FWHM spread of AnlE = nIF/QLE ~ 492

A more accurate definition of ) is 27 times the ratio of the time-averaged energy
stored to the energy loss per cycle. The power lost to the wall is

— c]1 _, =

P = [E]gfgaxﬂa-nds
_ [i] 8uafic
T 4x 4c

(5awa/1'c 2
—_— d .
167 jg‘H"‘ S (4.3)

jé (H, % #) - (B x 2)dS

where the subscript a stands for the resonance tk of either the TM or TE mode,
te ~ 1 is the relative magnetic permeability of the pipe wall, and the integrals are
carried over the walls of the beam pipe. In writing down Eq. (4.3), we have made the
approximation that the resonances are widely separated.
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We next normalized the electric and magnetic fields of mode a by letting

-E—ja. = eaé; 3 ﬁa = haﬁa y (44)
so that the volume integrals
f( A =f IH,2dV =1 . (4.5)
Vv v

Here e, and h, represent the strengths of the excitation and they are related. For
example, if we take the absolute value squared of Faraday’s law,

eaﬁf X 8_'; = ?cghaﬁa , (4.6)

and integrate over the whole volume of the cavity, with the help of Eqs. (2.3) and
(4.5), it is easy to find |e,| = |ha| in the Gaussian units. Note that we can still have
an arbitrary choice of relative phase.

The energy stored in the toroidal ring in this mode is

1 2 1 2
= —Je,|* = —|h.|" . 4.7
o= aeledlt = b (4.7
The figure of merit is therefore by definition,
2 1

Q= - : (4.8)
#c%f |H,|2dS
s

For the {(ik)-th TM mode, using Egs. (3.3) and (2.4), the normalized fields are

gk )
(Ea'k)z = — Zn(?ir) sin gkz )
VrhnNiMrRA
R
(gik)r = S Z:.(Q-'?”) cos §pz

VEha N R

12 Znlgir)

(Ex)o = - cos £z
\/Trhn.)\/:-riMqiRﬁ r

(Hix)y = Z Znlgir) sin &z |

\/ chopNMgR 7

£

=2 (qir)sin &z,
/TRy NIMR

14
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where & = m(2k — 1)/h, AJ™ is given by Eq. (2.12), and n = nIM is the resonant
harmonic. Again, the § and ¢ dependences have been suppressed. Then,

oo 4.2 (Ry/R)ZHqR,) + (R./R)ZHGR.)
$o 1FuldS = 4 i ey - (TR (4.10)

Note that the second term, the contribution of the inner and outer curved surfaces,
is very much less than the first term which comes from the top and bottom flat walls.
Thus, retaining only the latter contribution,

h
T™
bR ——— 4.11
tk 26{k ! ( )

which is close to our estimate of (4.2).
For the (ik)-th TE mode, the normalized fields are

(Hik), = g Zn(qir) cosérz

TN IEnRS
‘fkR ] .
Hi o= = — Zn 7 ’
( k) WRR}B (g )sin €z
(Hi)e = 6t Zu(air)

== sin gz ,
VThoNgEGRBE T

n Zn(qir)

(Eik)r = — ~ cos £z
VTR NiBgR T

2

(Er)o = “—*“——Wzn(%’")cossz’ (4.12)

where £ = 7(2k — 1)/h, NI is given by Eq. (2.13), and n = n}P is the resonant
harmonic. Then,

j{q [Ha|2dS =
4¢3 Rh n® @R\ 5 n?* glR_\ 5,
n2/82nqi2h {41‘2}\&%!3 [(R+ + "_sz_ Zn(QtR-F) + E + T’%*— Zn(q

+ anR’*’} , (4.13)

where the first two terms are the outer and inner curved wall contributions while the
third term comes from the upper and lower walls. Note that g ~ ¢R: = n and
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xR ~ neo. For the two terms n?/Ry and ¢fR./£}, the ratio is
n?6E [N
~ (D) 1, 4.14
R%qt ( n ) < (4.14)
so that the n?/R, terms can be neglected. The last term is
4¢€2Rr 4 (nca)2 4

n2g2n "~ R < 7 (4.15)

Thus the main contribution comes from the g R+ /&: terms, or the curved surfaces
only. At resonance, the normalization constants TE and V™ given by Egs. (2.12)
and (2.13) can be simplified using the resonance condition of Eq. (3.4) or (3.5) as well
as the Wronskian for J,(z) and ¥,{(z). The results are

TE _ 2 _ n? Y::.(QER—) ? _ _ n?
N = [(1 q?Ri) (Y,:(qim)) ‘TgR)| (4.16)
2

Yi(gR-)\"
= -1 . 4.1
P QIRb (Yn(mm) (®.17)
Similarly, Z,{(q:Rs) in Eq. (4.13) can be simplified. Remember that the fields in a
resonance are pushed mostly to the outer pipe boundary or the contribution of the

inner wall is negligible compared with that of the outer wall. Mathematically, this is
equivalent to

and

ZYq:Ry) Y. (qiR_)
" 3 ] and 1> 1.
ZHaR-) Y (aRy)
Then, Eq. (4.13) reduces to
f[?% Pas~1{1-2 B (4.18)
5 ik ~ b n 3 .
and therefore ,
2 «
Ex_—[(1-2), 4.19

where 1 (% n4) and « are given by Eq. (3.8). Although a/n is not negligible, it is
usually small for higher resonance modes and at high energies. As a result, QTF turns
out to give roughly the order of magnitude as Eq. (4.2).

It is interesting to note that QM receives its contribution mainly from the top and
bottom flat walls and is therefore proportional to the height & of vacuum chamber.
On the other hand, @ relies mostly on the contribution from the outer curved wall,
it is therefore proportional approximately to b, the distance from the beam to the
outer wall.
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IV.2 Shunt impedance

We first compute the amount of fields of the a-th mode, €, or h, in Eq. (4.4)
excited by the beam by assuming a power loss in the pipe walls. Then the shunt
impedance can be inferred.

From Egs. (4.3) and (4.8), the average power lost to the pipe wall for mode a is

. 171 w, 2
p= [ZJF s lha” (4.20)

The power loss can also be computed by the azimuthal electric field (£s)a seen by the
beam current

= 1
P=ze, j{(gg)af*de . (4.21)
Equating Eqgs. (4.20) and (4.21) and recalling that |e,| = |h,|, we get
4nl),
e = — ’;Q f (Es)aI*dE . (4.22)

Denoting the ‘voltage’ dropped per unit current by

f (Es)aI"de
Po = T (4.23
7 )
and substituting e} into Eq. (4.21), the average power loss becomes
P 27 Q)

Wy

%) ¢af® . (4.24)

Therefore the shunt impedance or the impedance at w, is

47r(),
Zsh = Q |¢a|2 . (425)
wﬂ
In mks units, this is
Qa1
Zan = Zy " |dal” - (4.26)

Thus what we need to compute is ¢, defined in Eq. (4.23) which is just the integral
of (& ). along the beam orbit. Using the explicit expressions given in Eqgs. (4.9) and
(4.12), we obtain

47TR§§ |Z"'a [lzneam
Rhzp NN M

|¢al” = . , (4.27)
47TR |dZﬂa/d$|beam TE ,

hbq;  NTE
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where, in dZ,, /dz, Z., is considered as a function of z defined by r = R + bz.
Recalling that ¢, R = n,, we get for the shunt impedance per unit harmonic (in mks
units),

47('32{]@‘1 (2]{: - 1)2R4 ,Znalgeam
TM ,
Zan nd h3b NIM

= " 2
n 47 ZoQ, R* lena/dw]be
ni R NTE

where ™ and ATF are given by Egs. (4.16) and (4.17). Again the contributions
of the TM (TE) modes come mainly from the upper and lower planar walls (outer
curved wall).

As an illustration for the SCC, using b = A/2 = 1.5 cm and wall conductivity
(copper at 4°K) ¢ = 1.8 x 10° (Q2m)~', the @’s and Zg,/n for the lowest TM and TE
modes at ~ 1 TeV and ~ 20 TeV are listed in Table III. Aside from the field form
factors which are the last factors in the Z,; formulas of Eq. (4.28), Z/n ~ n~ 7% and
Q ~ nl/z‘

(4.28)

am TE |

1 TeV 20 TeV

TE ™ TE ™

Ny 2.33 x 10° 5.39 x 10° 1.40 x 10° 2.57 x 10°

fa 8.42 x 10° GHz | 1.95 x 10* GHz | 5.05 x 10° GHz | 9.28 x 10® GHz

Q. 2.97 x 108 5.58 x 108 3.25 % 10° 3.85 x 108
Zsn -5 -7 —4 -4
- 7.45 107> Q 207x1077 Q 836 x107* Q2 1.22x107* Q2
Zsh -2 -4 -1 -2
5.84 x 107 200 x107* Q2 3.50 x 1071 @ 810 x 10~ Q
Tt leff

Table I1I: Impedances and positions of the lowest TE and TM modes

18



V. EFFECTIVE IMPEDANCE

We have seen that a particle beam revolving along an orbit of a certain radius R
will excite a series of TM and TE resonances centered at harmonics niM and nJF. For
particles traveling at a slightly different radius R + AR, another series of resonances
will be excited at slightly different harmonics. We want to compute the AR which
will excite the resonance at the next harmonic, i.e., n = n; + 1 where the superscript
TM or TE has been suppressed.

We need the beam position R as an implicit function of the particle velocity /3
and resonant harmonic n,. This can be obtained by rewriting Eq. (3.21) as

Ryj s, B
= =1+ani” + o (5.1)
where @, are related to the zeroes of the Airy function or its derivative,
2713y, TM
€y = (52)
2-1/3y! TE
Differentiating Eq. (5.1), one obtains
m , RUE\ AR R (2 55 R}
— = San; ; 5.3
(ap i k) R T RB\ZNE T g (5:8)

where 7, is the frequency dispersion and a,, is the momentum compaction. The SSC
main ring will be operated well above transition; therefore Np & oy, Keeping only the
lowest-order terms, Eq. {(5.3) can be simplified to

AR =2 ( b4 3353) , (5.4)

3 3

ik "L

where b is the half width of the beam pipe. For the lowest TE mode which occurs at
~ 20 TeV, nf = 1.40 x 10°. Taking b = 1.5 cm, we get

AR=132x10""m, (5.5)

which the radial offset of the particle beam to excite the lowest resonance at the next
harmonic. If we use the simplified Faltens-Laslett’s formula of Eq. (3.23) instead, we
will obtain only the first term in Eq. (5.4).

The SSC main ring is designed to have a longitudinal momentum spread of Ap/p ~
107* to avoid transverse instability. It has a frequency dispersion of 7, = 0.000233.
Therefore the transverse half beam size is R, Ap/p ~ 2.9x10~* m. From the designed
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normalized transverse emittance €, = 1.0x 1087 m-rad, we get a transverse half beam
size of 4.5 x 107% m if an average beta-function of 200 m is assumed. Thus, radially
across the beam of radius ~ 0.4 mm, a total of

beam size
= ~6.1x 107 :
N AR 6.1 x 10 (5.6)

series of resonances can be excited. In other words, for a given ik of either the TE or
TM mode, the resonances cover a range of harmonics of width ~ 108.
We have shown in Section IV.1 that the lowest resonance has a FWHM of

TE _ ”;riE
Ann —_ _TE— ~ 430 ) (57)
11

where the more accurate QIF in Table III has been used. This implies that each
particle beam of a definite radius in the SSC can excite ~ 430 lowest TE resonances.
We therefore make the proposition that the effective impedance per harmonic of the
a-th resonance seen by the beam should be Zg, /n multiplied by the resonance width

Na/Qa; or
()(3)-%

Here we have violated the condition that the resonances are far apart or isolated.
Therefore, Eq. (5.8) may not be correct at all. However, it should give us a correct
estimate. The results are tabulated in the last row of Table III. We see that for the
lowest resonance |Z/n|,q ~ 0.36Q which is not too small. However, recalling that the
SSC bunch has a rms length of 7 cm, the bunch spectrum extends to a rms harmonic of
only 1.89x 10%, whereas the resonanceis at nJF = 2.33x10°. Therefore this impedance
should have negligible effect on bunch-mode stability. The effective impedance of this
lowest mode, being a broad band of harmonic width ~ 6 x 107 much bigger than
the spread of the bunch spectral harmonic, can drive a fast microwave growth.? But
there is no alarm because the designed spread in momentum Ap/p ~ 107* warrants
the Landau damping® of the growth driven by an impedance per unit harmonic of
15 £2 which is much larger than what we have here. The effective impedances of other
higher modes are listed in Table IIL.

A better approach may be to start from summing up the azimuthal electric felds Ep
due to these adjacent resonances and then compute the effective impedance.® Since
the azimuthal electric flelds for these resonances may not be in phase, the actual
impedance computed will be less than that given by Eq. (5.8).

Next let us consider moving the beam sideway from the center of the beam pipe.
Let the fractional displacement outward be A. If the beam is at the inner edge of the
beam pipe, A = —1, the form factor, which is defined as the last factor in Eq. (4.28),

Zsh

n
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vanishes because the radial wave Z(gr) or Z'(gr) is zero there. As the beam is moved
outward keeping the linear velocity constant, the form factor increases and so does
the resonant harmonic because the allowable space for the fleld becomes less and less.
Due to criterion {1.1), the allowable space vanishes and there is no resonance possible
when A reaches

R
242
At this point the resonant harmonic reaches infinity and the form factor drops to zero.
Thus, the effective impedance given by Eq. {4.28) rises from zero at the inner edge
of the pipe, attains a maximum, and drops to zero at A,, which is 0.56 and 0.9989
when v = 1000 and 20000 respectively. The results are plotted in Fig. 5. We see that
when ¥ is not too big, for example ~ 1000, the impedance can be reduced by pushing
the beam outward from the center of the pipe so that the region available for wave
propagation is reduced. On the other hand, when = is extremely large, for example
~ 20000, the impedance can be reduced by pushing the beam inward so that the form
factor or the interaction between the beam and the resonant wave becomes smaller.

Ap =1

(5.9)

VI. APPLICATIONS TO THE SSC BOOSTERS AND THE TEVATRON
V1.1 The SSC injectors

The injection system of the SSC consists of three boosters: the low energy booster
(LEB), the medium energy booster (MEB), and the high energy booster (HEB). Some
specifications of these booster rings are listed in Table IV.

LEB MERB HEB

Ring radius 39.73 m | 302.52 m | 954.93
Beam pipe radius | 10 cm 10 em | 6.5 e
~ (injection) 1.632 8.585 106.6
~ (extraction) 8.585 106.6 1065

Table IV: Sizes and injection and extraction +’s of the SSC injectors

According to criterion (1.1}, in order to have toroidal resonances, the minimum
v’s required are 14.1, 38.9, and 85.7 respectively, where we have assumed that the
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beam is at the center of the beam pipe. Therefore, we expect no such resonances will
occur in the LEB. In Table V, we list the lowest resonances (TE modes) for the MEB
and HEB at extraction energies, where the impedances are largest. The conductivity
of stainless steel, ¢ = 1.37 (Q-m)~! is assumed.

MEB HEB

Mg 3.17 x 10° 3.03 x 108

fa 5.00 x 10! GHz | 1.51 x 10? GHz

Q. 5.48 % 10* 6.70 x 10*
Z;:h 0.769 0.0609
Zy
Zeh 4.45 Q 2.75 0
e

Table V: Impedances and positions of the lowest modes for the MEB and HEB

The MEB has a bunch length of 0.14 m corresponding to an rms harmonic spectral
spread of 2.1 x 10° which is about 150 times less than the harmonic of the lowest
toroidal resonance. The limit for mode-colliding instability” is quite high, | Zm Z /n| ~
73 §. The fast microwave limit” is Z/n ~ 13 . A rms bunch area of 0.00187 eV-sec,
a rms energy spread of 3.8 x 107%, and a bunch intensity of 2 x 101° particles have
been assumed. In any case, no worry of instability is NECESSary.

For the HEB, the limits” for mode-colliding and fast microwave instabilities are
|Zn Z/n| ~1.89 2 and Z/n ~ 0.33 Q2 respectively. A rms bunch area of 0.00187 eV-
sec, a rms energy spread of 1.3 x 107%, and a bunch intensity of 2 x 10° particles
have been assumed. The HEB has a bunch length of 0.04 m, corresponding to a
rms harmonic spectral spread of 2.3 x 10? which is about 130 times less than the
harmonic of the lowest toroidal resonance. Thus, mode-colliding stability may be safe
but microwave growth is not. At the very end of the cycle, the bunch area is blown
up to 0.035m eV-sec. The stability limits will be increased by ~ 86 times and the
bunch will become very stable. However, we think that it is necessary to increase the
bunch area in the whole acceleration cycle to safeguard stability.

The HEB is superconducting. Let us consider for fun if the beam pipe were coated
with a layer of copper in the same way as the main ring. The wall conductivity will
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become ¢ = 1.8 x 10° (-m)~! which is 1310 times bigger. In the last column of
Table V, Q. becomes 2.43 x 10° and Z,,/n becomes 2.21 . We see that, unlike
the SSC malin ring, due to the much larger ratio of beam-pipe radius to ring radius,
the resonance observed here (and for higher modes also) is very narrow indeed. The
spread in harmonics is only ~ 1.25. The criterion for fast microwave stability driven
by resonances narrower than the spectral width of the bunch is®

Za AlEle (o5)¢
Q@ ~ pL, \EJ~

where 7, is the frequency dispersion and og/E is the rms energy spread. Note that
the average bunch current I,, has been used instead and Z,,/Q is just the effective
Z/n defined in Eq. (5.8). Taking n, = 0.002772, og/E = 1.3 x 107%, we obtain the
limit Zg,/@Q = 11000 £2. This indicates that reducing the wall resistivity of the beam
pipe can help a lot under some special situation.

(6.1)

VI.2 The TEVATRON

The TEVATRON is very similar to the HEB of the SCC both in size and energy.
The ring radius is 1 km, the beam pipe radius 3.1 cm, and the injection and extraction
energies are 150 GeV and 1 TeV respectively. The lowest toroidal resonant modes are
listed in Table VI. A wall conductivity of ¢ = 1.37 x 10% (£2-m)~? is assumed.

The colliding mode of the TEVATRON is designed to store proton and antiproton
bunches of intensity ~ 1 x 10! particles per bunch, rms bunch length 40 cm, rms
energy spread of 1.2 x 107*. Thus, the bunches are stable against fast microwave
growth even if the impedance per harmonic is Z/n ~ 53 . The bunch spectrum has
a rms spread of 2500 harmonics which is three to four orders of magnitude below the
lowest toroidal resonant harmonic. Thus, these torcidal resonances should not have
any effects on the bunch stability.
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150 GeV 1 TeV

TE T™ TE ™

Ng 2.52 x 107 6.78 x 107 9.92 x 10 1.83 x 107

fa 1.20 x 10° GHz | 3.24 x 103 GHz | 4.73 x 102 GHz | 8.73 x 10 GHz

Q. 4.80 x 104 1.30 x 10° 5.63 x 10* 6.74 x 10%
Zon 441 x107°Q | 241 x1071°Q | 1.04 x10-2 Q 1.43 x 1073 Q
7t
Zsh -2 -7
231 x10720 | 1.26 x10°7 Q 1.83 Q 0.387
L leff

Table VI: Impedances and positions of the lowest TE and TM toroidal resonant modes
for the TEVATRON
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Plots of the azimuthal electric field Z(x) across the beam pipe
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